
Technical Whitepaper v1.0

October 2025

Orbitrust represents a paradigm shift in decentralized computing infrastructure by combining Proof-of-Stake blockchain
technology with peer-to-peer container orchestration. Built entirely in Rust using the high-performance Axum web framework,

Orbitrust enables users to deploy and exchange compute resources directly between nodes while maintaining the security,
transparency, and immutability of blockchain technology .

The platform addresses the growing demand for decentralized cloud computing by creating a trustless marketplace where users
can rent computational power for Docker and Kubernetes workloads. Payments are accepted in major cryptocurrencies including

Bitcoin, Ethereum, and Solana, with significant discounts available when using the platform's native ORBT token. Validators
secure the network through staking mechanisms and earn rewards based on uptime, transaction verification, and compute

contribution metrics .

Key innovations include post-quantum cryptographic security, a reactive web interface powered by Askama templates and HTMX,

and an integrated governance model that empowers token holders to direct protocol development . With an economic
model designed to balance security, decentralization, and sustainable growth, Orbitrust positions itself as infrastructure for the

next generation of distributed applications.

The centralized cloud computing market, dominated by a handful of providers, suffers from several critical limitations:

Existing blockchain solutions have attempted to address these issues but face their own challenges. Many platforms lack true

containerization support, limiting their utility for modern microservices architectures . Others sacrifice decentralization for
performance or implement energy-intensive Proof-of-Work consensus mechanisms that are increasingly unsustainable .

The global blockchain market is projected to grow from $7.18 billion in 2022 to $163.83 billion by 2029, representing a compound

annual growth rate of 56.3% . Within this landscape, decentralized cloud computing represents a particularly high-growth
segment, driven by:

Orbitrust addresses this opportunity by providing production-ready infrastructure that bridges traditional DevOps practices with
blockchain technology. By supporting industry-standard tools like Docker and Kubernetes, the platform reduces friction for

developers transitioning from centralized to decentralized infrastructure .

Orbitrust: A Peer-to-Peer Compute Blockchain Built on Rust

Executive Summary

[1] [2] [3]

[4] [5] [6]

[7] [8] [9] [10]

1. Introduction

1.1 Problem Statement

Single Points of Failure: Centralized data centers create vulnerability to outages, affecting millions of users simultaneously

Vendor Lock-In: Proprietary APIs and infrastructure make migration costly and complex

Opaque Pricing: Dynamic pricing models lack transparency and predictability

Geographic Limitations: Data sovereignty concerns restrict deployment options

Inefficient Resource Allocation: Idle compute capacity cannot be easily monetized

[11] [12]

[13] [4]

1.2 Market Opportunity

[14]

Enterprise adoption of microservices architectures requiring flexible deployment options

Increasing awareness of centralization risks in traditional cloud infrastructure

Growing demand for privacy-preserving computation in regulated industries

Emergence of Web3 applications requiring decentralized hosting infrastructure

[11] [12]

Orbitrust creates a decentralized marketplace for computational resources through an innovative architecture that combines:

The result is a platform that delivers the reliability and performance of traditional cloud providers while maintaining the
transparency, security, and censorship-resistance of decentralized systems.

Orbitrust's architecture adheres to several core design principles:

Modularity: The codebase is organized into distinct crates, each responsible for a specific domain of functionality. This
separation enables independent testing, maintenance, and upgrading of components .

Security-First Development: All cryptographic operations utilize post-quantum resistant algorithms, protecting against both
current and future attack vectors. Smart contracts undergo rigorous auditing before deployment .

Performance Optimization: Rust's zero-cost abstractions and compile-time guarantees ensure minimal runtime overhead. The
Axum framework leverages Tokio's async runtime for high-concurrency workloads .

Developer Ergonomics: While maintaining security and performance, the platform provides intuitive APIs and comprehensive
documentation to minimize integration friction .

Programming Language: Rust provides memory safety without garbage collection, making it ideal for systems programming

where both security and performance are critical .

Web Framework: Axum offers ergonomic routing, type-safe request handling, and seamless integration with the Tokio async

ecosystem .

P2P Networking: libp2p handles peer discovery, NAT traversal, and secure communication channels across heterogeneous

network environments .

Template Engine: Askama compiles templates to Rust code, providing compile-time validation and excellent runtime

performance .

Reactivity Layer: HTMX enables dynamic user interfaces without heavy JavaScript frameworks, reducing client-side

complexity .

Container Runtime: Docker provides standardized packaging for applications, while Kubernetes orchestrates distributed

workload deployment .

Database: PostgreSQL stores on-chain state with ACID guarantees, while embedded databases handle node-local data .

The Orbitrust network comprises four primary layers:

Physical Layer: Individual node hardware including validators, compute providers, and client applications.

Networking Layer: libp2p-based peer-to-peer communication enabling node discovery, gossip protocols for block propagation,

and direct connections for data transfer .

1.3 Solution Overview

1. Proof-of-Stake Consensus: Energy-efficient validation that incentivizes honest behavior through economic stakes [1] [13] [4]

2. Container Orchestration: Native support for Docker and Kubernetes workload deployment [11] [12]

3. Multi-Currency Payments: Accept BTC, ETH, SOL, and other major cryptocurrencies with native token discounts [15] [16] [17]

4. Validator Economics: Reward structure based on uptime, verification work, and compute provision [6] [18] [19]

5. Reactive Web Interface: Modern user experience through Axum, Askama, and HTMX integration [20] [9] [10]

2. Technical Architecture

2.1 System Design Principles

[3] [20]

[7] [8] [21] [22]

[20] [23] [24]

[20] [25]

2.2 Core Technology Stack

[3] [26] [27]

[20] [23] [24]

[28] [29] [30] [31]

[9] [10] [32] [33]

[10] [32]

[11] [12] [34] [35]

[20] [24]

2.3 Network Layers

[28] [29] [30]

Consensus Layer: Proof-of-Stake validator selection, block production, and finalization with slashing penalties for Byzantine

behavior .

Application Layer: Axum-powered REST APIs, WebSocket connections for real-time updates, and Askama-rendered web

interfaces .

Orbitrust implements a hybrid Proof-of-Stake consensus mechanism optimized for both security and performance. Validators are
selected pseudo-randomly to propose blocks, with selection probability weighted by their effective stake amount .

Validator Selection Algorithm:

Where represents the probability of validator being selected to propose a block, is their staked token
amount, and is the total number of active validators .

This probabilistic selection ensures decentralization while maintaining predictable block production times. Unlike deterministic
rotation schemes, pseudo-random selection makes validator schedules unpredictable to potential attackers .

Block production follows a two-phase commit protocol:

Phase 1 - Proposal: The selected validator constructs a block containing pending transactions, computes state transitions, and
broadcasts the proposed block to the network .

Phase 2 - Attestation: A committee of validators verifies the proposed block's validity by checking transaction signatures, state
transition correctness, and consensus rule compliance. Validators broadcast attestations (votes) for valid blocks .

Finalization: Once a supermajority (typically 2/3+1) of validators attest to a block, it achieves finality and becomes immutable.
This Byzantine Fault Tolerant approach ensures network operation even when up to 1/3 of validators act maliciously or

experience failures .

Average block time targets 6 seconds, providing a balance between transaction throughput and network propagation delay.

Finality is achieved within 2-3 blocks, typically under 20 seconds .

To maintain network integrity, validators face economic penalties (slashing) for Byzantine behavior :

Double Signing: Proposing conflicting blocks at the same height results in an immediate penalty of 5% of staked tokens and

ejection from the validator set .

Extended Downtime: Validators offline for more than 24 consecutive hours lose 0.01% of stake per missed epoch, with

automatic ejection after 7 days of continuous downtime .

Invalid Block Proposals: Proposing blocks that violate consensus rules (invalid transactions, incorrect state transitions) results

in a 1% stake penalty .

Attestation Failures: Failing to attest valid blocks consistently (>10% miss rate over 1000 epochs) results in gradual stake

reduction and eventual ejection .

Slashed tokens are burned rather than redistributed, ensuring that slashing purely represents an economic deterrent rather than

creating perverse incentives for false accusations .

[1] [13] [36] [37] [38]

[20] [23] [10]

3. Consensus Mechanism

3.1 Proof-of-Stake Design

[1] [36] [4]

[1] [4]

[13] [36]

3.2 Block Production and Finalization

[2] [3]

[1] [18] [19]

[1] [36]

[13] [4]

3.3 Slashing Conditions
[37] [38] [39] [40]

[37] [38]

[37] [39]

[39] [40]

[38] [39]

[37] [38] [39]

To become a validator on the Orbitrust network, nodes must meet specific technical and economic criteria:

Minimum Stake: 10,000 ORBT tokens must be locked as collateral. This amount balances accessibility with sufficient economic
security .

Hardware Specifications:

Software Requirements:

Registration Process: Prospective validators submit an on-chain registration transaction including their node ID, staking deposit,
and commission rate. After a 48-hour waiting period to prevent manipulation, the validator enters the active set .

The Orbitrust network supports three primary node types:

Validator Nodes: Produce blocks, verify transactions, and participate in consensus. Must maintain high uptime and meet strict
hardware requirements .

Compute Provider Nodes: Offer computational resources for container workloads. May or may not stake tokens depending on
whether they wish to validate transactions .

Light Nodes: Synchronize block headers only, relying on validator nodes for full transaction data. Suitable for wallets and low-
resource environments .

Orbitrust leverages libp2p for robust peer-to-peer networking capabilities :

Bootstrap Nodes: Initial network entry points hardcoded into client software. Provide addresses of active peers for new nodes
joining the network.

mDNS Discovery: Multicast DNS enables automatic peer discovery on local networks, particularly useful for development and
testing environments .

Kademlia DHT: Distributed hash table for global peer discovery and content routing. Nodes maintain routing tables organized by
XOR distance metric .

NAT Traversal: Automatic detection and traversal of Network Address Translation and firewalls using techniques including:

Connection establishment typically completes in 1-2 seconds for nodes on public networks, with relay-assisted connections taking

up to 90 seconds .

3.4 Validator Requirements

[6] [18] [19]

4+ CPU cores

16 GB RAM minimum

500 GB SSD storage

100 Mbps network connection

Orbitrust validator client (compiled from source or official binary)

Synced copy of the blockchain

System monitoring and alerting infrastructure

[18] [19]

4. Node Architecture and P2P Networking

4.1 Node Types

[18] [19]

[11] [12]

[41] [42]

4.2 Peer Discovery and Connectivity
[28] [29] [30] [31]

[28]

[28] [29]

UPnP port mapping

STUN/TURN relay servers

Circuit relay protocols for holepunching [28] [29]

[28]

New blocks and transactions propagate through the network via optimized gossip protocols:

Block Propagation: When a validator produces a block, they broadcast it to all connected peers. Each peer forwards the block to
their connections, creating exponential propagation. Duplicate detection prevents redundant transmissions .

Transaction Pool Synchronization: Pending transactions are gossiped similarly, with each node maintaining a mempool of
unconfirmed transactions available for inclusion in future blocks.

Message Deduplication: Cryptographic hashes identify duplicate messages, with nodes maintaining a bounded cache of
recently seen message IDs to filter redundant propagation .

Average block propagation time reaches 95% of the network within 2 seconds under normal conditions, ensuring minimal uncle
blocks and maintaining chain consistency .

Orbitrust provides native support for Docker container deployment, enabling users to package applications with all dependencies

into portable, reproducible units :

Container Registry: Decentralized registry for storing and distributing container images, with content addressing to ensure

integrity .

Resource Quotas: Specify CPU cores, memory allocation, storage volumes, and network bandwidth for each deployed

container .

Networking: Configurable networking modes including bridge networks for container isolation and host networking for maximum

performance .

For complex multi-container applications, Orbitrust supports Kubernetes workload definitions :

Deployment Manifests: Standard Kubernetes YAML specifications define desired application state, including replica counts,

update strategies, and health checks .

Service Discovery: Kubernetes Services provide stable endpoints for accessing containerized applications, with automatic load

balancing across replicas .

Horizontal Scaling: Autoscale deployments based on CPU utilization, memory consumption, or custom metrics reported by

applications .

Persistent Storage: Distributed storage volumes enable stateful applications to maintain data across container restarts and

rescheduling .

The compute marketplace operates as an on-chain order book matching resource providers with consumers:

Resource Listings: Compute providers create listings specifying available resources (CPU, memory, storage), pricing, and

geographic region .

Order Matching: Users submit requests specifying required resources and maximum price. The protocol automatically matches

orders with suitable providers .

Payment Channels: State channels enable low-latency micropayments for compute usage without on-chain transaction

overhead for every billing period .

Pricing Formula:

4.3 Gossip Protocols

[2] [3]

[28] [29]

[3] [26]

5. Containerization and Compute Marketplace

5.1 Docker Integration

[11] [12] [34]

[11]

[12]

[11] [12]

5.2 Kubernetes Orchestration
[11] [12] [35]

[12] [35]

[12]

[12]

[11] [12]

5.3 Compute Pricing and Marketplace

[5] [43]

[5] [43]

[15] [17]

Where values represent per-unit resource prices, is usage duration, and is the discount multiplier (1.0 for cryptocurrency

payments, 0.7-0.8 for ORBT tokens) .

A typical deployment workflow demonstrates the platform's end-to-end capabilities:

Orbitrust accepts payment in multiple major cryptocurrencies to maximize accessibility :

Bitcoin (BTC): The most widely held cryptocurrency, accepted via Lightning Network for fast, low-fee transactions .

Ethereum (ETH): Native support for ERC-20 tokens enables payment with ETH, USDT, USDC, and other Ethereum-based
assets .

Solana (SOL): Integration with Solana enables high-speed, low-cost payments in SOL and SPL tokens .

Binance Smart Chain: Support for BNB and BEP-20 tokens provides additional payment flexibility .

The payment gateway provides a unified interface for processing diverse cryptocurrencies :

Address Generation: For each payment, the system generates a unique deposit address for the specified cryptocurrency,
tracked on-chain to the user's account .

Transaction Monitoring: Automated monitoring watches for incoming transactions to payment addresses, waiting for sufficient
confirmations before crediting accounts .

Exchange Rate Oracle: Real-time price feeds from multiple sources determine cryptocurrency-to-compute-unit conversion rates,
with median filtering to prevent manipulation .

Settlement: Received cryptocurrency is either held in platform reserves for future payouts to compute providers or swapped to
stablecoins for treasur stability .

ORBT token holders receive preferential pricing on compute resources :

Discount Tiers:

[5] [43]

5.4 Deployment Workflow Example

1. Image Preparation: Developer builds a Docker image containing their application and pushes it to the decentralized

registry .[11] [34]

2. Resource Selection: Using the web interface or API, developer specifies compute requirements and selects from available
providers based on price, location, and reputation scores .[20] [23]

3. Payment Escrow: Required compute fees are escrowed in a smart contract, automatically released to providers upon

successful deployment verification .[15] [17]

4. Container Deployment: Selected provider pulls the image and launches containers according to specifications, reporting
deployment success on-chain .[12] [34]

5. Monitoring: Real-time metrics dashboard displays resource utilization, application health, and cost accumulation .[20] [10]

6. Termination: Upon completion or explicit shutdown, containers are destroyed, final settlement occurs, and remaining escrow

returns to the user .[12]

6. Multi-Currency Payment System

6.1 Supported Cryptocurrencies
[15] [16] [17] [44]

[15] [16]

[16] [17]

[15] [16] [45]

[16] [17]

6.2 Payment Gateway Architecture
[15] [16] [17]

[15]

[15] [17]

[6] [43]

[43] [17]

6.3 Native Token Discount Mechanism
[5] [6] [43]

1,000-10,000 ORBT staked: 10% discount

10,001-50,000 ORBT staked: 20% discount

Discounts apply automatically based on the user's staked balance at transaction time. This mechanism incentivizes token

acquisition and long-term holding, creating sustainable demand for ORBT .

Example Calculation:

A user deploying a workload with a base cost of 100 USDT equivalent would pay:

The ORBT token follows a fixed-supply model with deflationary mechanics :

Total Supply: 1,000,000,000 ORBT tokens (hard cap, no additional minting)

Initial Distribution:

Vesting Schedules: Team and advisor allocations vest linearly over 48 months following a 12-month cliff, preventing premature
dumping while aligning long-term incentives .

Despite the fixed total supply, staking rewards are distributed from the Validator Incentives pool, creating an effective "inflation"

rate that decreases over time :

Year 1-2: 8% annual yield on staked tokens

Year 3-5: 6% annual yield
Year 6-10: 4% annual yield

Year 10+: 2% annual yield (sustainable long-term rate funded by transaction fees)

With an expected 40-60% of circulating supply staked, actual inflation experienced by non-stakers remains modest while

providing sufficient validator incentives .

Several mechanisms create deflationary pressure offsetting staking rewards :

Transaction Fee Burning: 50% of all network transaction fees are permanently burned, reducing circulating supply .

Slashing Burns: Tokens slashed from misbehaving validators are burned rather than redistributed .

Compute Marketplace Burning: 2% of compute payments made in ORBT are burned, creating direct linkage between platform

utility and token value .

Fee Burn Formula:

50,001+ ORBT staked: 30% discount

[5] [6] [43]

With Bitcoin: 100 USDT

With 5,000 ORBT staked: 90 USDT equivalent in ORBT

With 25,000 ORBT staked: 80 USDT equivalent in ORBT

With 100,000 ORBT staked: 70 USDT equivalent in ORBT

7. Tokenomics

7.1 Token Supply and Distribution
[5] [46] [43]

Public Sale: 35% (350,000,000 ORBT)

Ecosystem Development Fund: 25% (250,000,000 ORBT)

Team and Advisors: 15% (150,000,000 ORBT, 4-year vesting with 1-year cliff)

Validator Incentives: 15% (150,000,000 ORBT, released gradually over 10 years)

Foundation Reserve: 10% (100,000,000 ORBT)

[5] [43]

7.2 Staking Yields and Inflation

[6] [18] [19]

[6] [18] [19]

7.3 Deflationary Mechanisms
[5] [46] [43]

[46] [43]

[37] [38] [39]

[5] [43]

At moderate network activity levels, burned tokens offset 30-50% of staking emissions, with high utilization potentially creating net

deflationary dynamics .

The total value staked in the network provides an upper bound on the cost of a 51% attack :

Attack Cost Calculation:

With a target of 400-600 million ORBT staked and a token price of $0.50-$1.00, the attack cost ranges from $100-$300 million,

providing robust economic security even during early network stages .

Additionally, slashing penalties ensure attackers lose their entire stake upon detection, making successful attacks both expensive

and destructive to the attacker's capital .

The validator onboarding process balances accessibility with maintaining network quality:

Step 1 - Node Setup: Install and configure the Orbitrust validator client, ensuring proper network connectivity and system

monitoring .

Step 2 - Key Generation: Generate validator keys using the provided CLI tool, securing private keys in hardware security

modules or encrypted storage .

Step 3 - Stake Deposit: Submit an on-chain transaction depositing 10,000 ORBT minimum to the staking contract. Excess stake

increases selection probability proportionally .

Step 4 - Registration: Broadcast validator registration transaction including node network ID, commission rate (percentage of

rewards retained), and contact endpoint .

Step 5 - Activation: After 48-hour waiting period, validator enters active set and begins participating in consensus .

Validators earn rewards from three sources:

Block Rewards: Fixed reward per produced block, currently 10 ORBT per block with halvings every 2 years .

Transaction Fees: Validators retain a portion of transaction fees from blocks they produce, typically 0.1-0.5 ORBT per block

depending on network activity .

Compute Provider Fees: Validators operating compute nodes earn additional fees from resource provisioning, typically 80-90%

of total compute payments with 10-20% going to protocol treasury .

Total Annual Yield Example:

A validator with 50,000 ORBT staked might earn:

Actual yields vary based on total network stake, validator uptime, and compute provision activity .

[46] [43]

7.4 Economic Security Analysis
[1] [4] [6]

[1] [6]

[37] [38] [39]

8. Validator Staking and Rewards

8.1 Becoming a Validator

[18] [19]

[7] [8]

[6] [18] [19]

[18] [19]

[19]

8.2 Reward Structure

[6] [18]

[18] [19]

[43] [19]

Block rewards: ~12,000 ORBT/year (assuming 30% selection probability)

Transaction fees: ~1,200 ORBT/year

Compute provision: ~8,000 ORBT/year (if running compute services)

Total: ~21,200 ORBT (~42% annual yield on staked amount)

[6] [18] [19]

While direct validation requires technical expertise, token holders can delegate their stake to validators:

Delegation Mechanism: Token holders lock tokens in a delegation contract specifying their chosen validator. The validator's
selection probability increases proportionally, with rewards shared based on the validator's commission rate .

Typical Commission: Most validators charge 5-15% commission, retaining that percentage of earned rewards while passing the
remainder to delegators .

Redelegation: Delegators can change validators without unstaking period, encouraging validators to maintain high performance
and competitive commission rates .

Orbitrust implements a fully on-chain governance system enabling community-driven protocol evolution :

Proposal Submission: Any token holder with 100,000+ ORBT can submit governance proposals, which are broadcast on-chain
and entered into a voting queue .

Voting Period: Each proposal has a 14-day voting period during which token holders cast votes. Voting power is proportional to
ORBT holdings, with delegated tokens voting according to delegatee preferences .

Quorum Requirements: Proposals require participation from at least 10% of circulating supply to be valid, preventing low-turnout
manipulation .

Approval Threshold: Simple majority (>50%) of participating tokens must vote in favor for proposal approval .

Implementation Delay: Approved proposals have a 7-day execution delay, providing time for community response and potential

counter-proposals if necessary .

The governance system controls several critical protocol parameters :

Economic Parameters:

Technical Parameters:

Treasury Allocation:

Protocol Upgrades:

8.3 Commission Rates and Delegation

[36] [18] [19]

[36] [19]

[36] [18]

9. Governance Model

9.1 On-Chain Governance Mechanisms
[47] [48] [49]

[47] [48]

[47] [48] [49]

[47] [48]

[47] [48]

[48]

9.2 Governance Scope
[47] [48] [50]

Transaction fee structure

Validator reward amounts

Slashing penalty severity

Token burn rates

Block size limits

Block time targets

Validator set size

Node hardware requirements

Ecosystem development grants

Marketing initiatives

Security audits and bug bounties

Partnership development

Consensus mechanism modifications

To encourage participation while respecting expertise, Orbitrust implements liquid democracy features :

Delegation: Token holders can delegate voting power to trusted experts or community leaders while retaining the ability to
override on specific proposals .

Revocable Delegation: Delegations can be changed at any time, including mid-voting period, ensuring delegates remain
accountable .

Weighted Voting: Some proposals may implement quadratic voting or other weighted mechanisms to balance large holders with
broad community sentiment .

Orbitrust proactively addresses the quantum computing threat by implementing NIST-standardized post-quantum algorithms

:

Key Encapsulation: CRYSTALS-Kyber (FIPS 204) provides quantum-resistant key exchange for establishing secure

communication channels between nodes .

Digital Signatures: CRYSTALS-Dilithium (FIPS 204) and Falcon replace ECDSA for transaction signing and block attestation,

providing 128-bit post-quantum security .

Hash Functions: SHA3 and BLAKE3 provide quantum-resistant hashing for block identifiers and Merkle trees .

The transition to post-quantum cryptography increases transaction sizes by approximately 3-4x compared to traditional elliptic
curve schemes, necessitating larger block sizes and increased bandwidth requirements . However, this overhead is justified

given the existential threat quantum computing poses to classical cryptographic systems.

Smart contracts deployed on Orbitrust undergo rigorous security review :

Automated Analysis: Static analysis tools including Slither and Aderyn scan contract code for common vulnerabilities including

reentrancy, integer overflow, and access control issues .

Manual Audit: Security experts conduct line-by-line code review, examining business logic, economic incentives, and potential

attack vectors .

Formal Verification: Critical system contracts undergo formal verification proving mathematical properties about their behavior

under all possible inputs .

Bug Bounty Program: Ongoing bounties incentivize white-hat researchers to identify vulnerabilities in deployed contracts, with

rewards scaling based on severity .

Multiple layers of defense protect against network-level attacks:

DDoS Mitigation: Rate limiting, connection throttling, and proof-of-work challenges prevent denial-of-service attacks against

individual nodes .

Sybil Resistance: Proof-of-Stake ensures that creating multiple identities provides no advantage without corresponding stake,

preventing Sybil attacks .

Smart contract deployments

API breaking changes

9.3 Delegated Voting and Liquid Democracy
[48] [49] [50]

[48] [49]

[48] [50]

[49]

10. Security and Cryptography

10.1 Post-Quantum Cryptography
[7] [8]

[21] [51]

[7] [8] [21]

[7] [8] [21]

[2] [3]

[7] [8]

10.2 Smart Contract Security
[22] [52] [53] [54]

[22] [53]

[22] [52]

[22]

[22] [52]

10.3 Network Security Measures

[28] [29]

[1] [4]

Eclipse Attack Prevention: Diverse peer selection and encrypted communications prevent attackers from isolating nodes from

the honest network .

Long-Range Attack Defense: Checkpointing and weak subjectivity ensure nodes can distinguish the canonical chain from

fabricated alternatives .

Orbitrust employs a market-based fee mechanism similar to Ethereum's EIP-1559 :

Base Fee: Dynamically adjusted per-block fee that increases when blocks are full and decreases when blocks are empty,

targeting 50% block utilization .

Priority Fee: User-specified tip paid to validators to prioritize transactions during congestion .

Total Fee Calculation:

Where gas measures computational complexity, with simple transfers consuming ~21,000 gas and complex smart contract

interactions consuming proportionally more .

Fee Distribution:

During normal conditions, transaction fees range from $0.01-$0.05 per transaction, increasing to $0.10-$0.50 during peak
activity .

The compute marketplace operates on supply-demand dynamics with protocol-mediated pricing:

Supply-Side Economics: Compute providers set asking prices based on their operating costs (electricity, hardware depreciation,
bandwidth) plus desired profit margin. Competitive pressure drives prices toward equilibrium .

Demand-Side Economics: Users value compute based on their application requirements and alternative options (centralized
cloud, self-hosting). Price sensitivity varies significantly across use cases .

Market Clearing Price: The protocol maintains an order book matching buyers and sellers at mutually acceptable prices, with
unmatched orders automatically cancelled after 24 hours .

Expected Pricing: Based on comparable decentralized compute platforms, expected rates are:

These rates are 30-50% below major cloud providers while providing superior privacy and censorship-resistance guarantees

.

[28] [29]

[1] [40]

11. Network Economics and Fee Structure

11.1 Transaction Fees
[55] [56] [57]

[55] [56]

[55] [56]

[55] [56] [57]

50% burned (deflationary mechanism)

40% to block producer

10% to protocol treasury

[55] [57]

11.2 Compute Marketplace Economics

[5] [43]

[5]

[5] [43]

CPU: $0.02-$0.05 per core-hour

Memory: $0.002-$0.005 per GB-hour

Storage: $0.05-$0.10 per GB-month

[5]

[43]

Researchers require significant computational resources for simulations, data analysis, and machine learning training:

Use Case: A genomics researcher needs to analyze DNA sequencing data requiring 100 CPU cores for 48 hours.

Implementation: Researcher packages analysis pipeline as a Docker container, uploads to Orbitrust registry, and submits

compute job requesting 100 cores. Multiple compute providers collaborate to fulfill the order, processing data in parallel. Results
are returned via distributed storage, with automatic payment settlement upon completion.

Benefits: 40% cost savings versus commercial cloud, enhanced privacy for sensitive medical data, geographic distribution for
data sovereignty compliance .

Software development teams require on-demand compute for building and testing code:

Use Case: A development team pushes code to their Git repository, triggering automated build and test pipelines.

Implementation: CI/CD system interfaces with Orbitrust API to spawn Docker containers running build tools and test suites.

Containers execute in parallel across multiple providers, with results aggregated and reported. Containers are destroyed
immediately upon completion, with payment proportional to actual usage.

Benefits: Pay-per-use pricing eliminates waste from idle CI/CD infrastructure, reduced attack surface from ephemeral
environments, censorship-resistance ensures availability regardless of repository content .

Web3 applications require hosting infrastructure that matches their decentralized nature:

Use Case: A decentralized exchange (DEX) needs to host its order matching engine, API endpoints, and web interface.

Implementation: DEX deploys Kubernetes manifests specifying their application architecture. Orbitrust schedules containers

across geographically distributed providers, configuring load balancing and automatic failover. Users interact with the application
through stable DNS names, unaware of the distributed backend.

Benefits: True decentralization with no single points of failure, improved uptime through geographic redundancy, alignment of
infrastructure with application philosophy .

12. Example Use Cases

12.1 Scientific Computing

[11] [12]

12.2 Continuous Integration / Continuous Deployment

[12] [34]

12.3 Decentralized Application Hosting

[11] [12] [35]

13. Development Roadmap

13.1 Phase 0: Foundation (Completed - Q4 2024)

Core blockchain implementation in Rust

Proof-of-Stake consensus mechanism

Basic P2P networking via libp2p

Wallet infrastructure and key management

Testnet launch for validator onboarding

13.2 Phase 1: Infrastructure (Q1-Q2 2025)

Docker container deployment support

Payment gateway integration (BTC, ETH, SOL)

Validator staking and reward distribution

Slashing mechanism implementation

Web interface development (Axum + Askama + HTMX)

Target Performance:

Scalability Trajectory:

13.3 Phase 2: Marketplace (Q3-Q4 2025)

Compute marketplace order book

Kubernetes orchestration support

Multi-currency payment routing

Native token discount mechanism

Smart contract deployment framework

13.4 Phase 3: Governance (Q1-Q2 2026)

On-chain governance proposal system

Delegated voting implementation

Treasury management tools

Community grant program

Decentralized autonomous organization (DAO) structure

13.5 Phase 4: Scaling (Q3-Q4 2026)

Layer 2 scaling solutions for high-throughput applications

Cross-chain bridges for interoperability

Advanced monitoring and analytics

Enterprise features (SLAs, support tiers)

Global compute provider network expansion

13.6 Phase 5: Enhancement (2027+)

Post-quantum cryptography full deployment

Confidential computing with trusted execution environments

Advanced scheduling algorithms for optimal resource utilization

Machine learning-based pricing optimization

Zero-knowledge proof integration for enhanced privacy

14. Technical Specifications

14.1 Performance Metrics

Block time: 6 seconds average

Finality: 18 seconds (3 blocks)

Transaction throughput: 1,000-2,000 TPS on Layer 1

Network latency: Sub-second block propagation to 95% of nodes

Year 1: 1,000 TPS, 100 validators

Year 3: 5,000 TPS, 500 validators

Year 5: 10,000 TPS, 1,000+ validators

Block Structure:

pub struct Block {
 pub header: BlockHeader,
 pub transactions: Vec<Transaction>,
 pub attestations: Vec<Attestation>,
}

pub struct BlockHeader {
 pub height: u64,
 pub timestamp: u64,
 pub previous_hash: Hash,
 pub state_root: Hash,
 pub transaction_root: Hash,
 pub validator: ValidatorId,
 pub signature: Signature,
}

Transaction Structure:

pub struct Transaction {
 pub from: Address,
 pub to: Address,
 pub value: Amount,
 pub gas_limit: u64,
 pub gas_price: Amount,
 pub nonce: u64,
 pub data: Vec<u8>,
 pub signature: Signature,
}

P2P Protocol Version: /orbitrust/1.0.0

Message Types:

The Axum-based REST API provides programmatic access to network functions:

Blockchain Queries:

Validator Operations:

Compute Marketplace:

14.2 Data Structures

14.3 Network Protocol

BlockProposal: New block broadcast by producer

BlockAttestation: Validator vote on proposed block

TransactionBroadcast: New transaction for mempool inclusion

StateRequest: Request for state data synchronization

PeerDiscovery: Peer exchange for network topology maintenance

14.4 API Endpoints

GET /api/v1/blocks/{height} - Retrieve block by height

GET /api/v1/transactions/{hash} - Query transaction details

GET /api/v1/accounts/{address} - Account balance and nonce

POST /api/v1/validators/register - Register new validator

GET /api/v1/validators/list - List active validators

GET /api/v1/validators/{id}/stats - Validator performance metrics

Governance:

Orbitrust represents a comprehensive solution to the centralization challenges plaguing contemporary cloud infrastructure. By
combining Proof-of-Stake consensus with container orchestration, multi-currency payments, and reactive web technologies, the

platform delivers production-ready decentralized computing infrastructure .

The architecture balances multiple competing concerns: security through economic incentives and post-quantum cryptography

, performance through Rust's efficiency and async runtime , and usability through standards-compliant tooling
and intuitive interfaces .

Economic mechanisms create sustainable incentives for all stakeholders. Validators earn rewards for securing the network,
compute providers monetize idle hardware, and users access affordable computational resources while maintaining privacy and

censorship-resistance .

The governance model ensures the protocol can adapt to changing requirements while maintaining community control. Token

holders direct development priorities, approve protocol upgrades, and allocate treasury resources through transparent on-chain
processes .

As quantum computing advances and centralization risks become increasingly apparent, Orbitrust is positioned as critical
infrastructure for the next generation of decentralized applications. By starting development today, the platform can achieve the

maturity, network effects, and battle-testing required for mainstream adoption by the time market conditions converge .

The roadmap prioritizes delivering tangible utility at each phase, from basic block production to sophisticated marketplace

dynamics and governance capabilities. This pragmatic approach ensures sustainable growth while maintaining the flexibility to
incorporate emerging technologies and respond to community feedback .

Orbitrust is not merely a blockchain platform or a compute marketplace—it is infrastructure for a decentralized future where
individuals and organizations can deploy applications without surrendering control to centralized intermediaries. Through careful

technical design, aligned economic incentives, and community governance, Orbitrust aims to make this vision a practical reality.

Citations indicate sources from research phase. Complete citation list maintained at https://github.com/orbitrust/whitepaper/refere
nces.md

Orbitrust Foundation
October 2025
Version 1.0

For updates and technical discussions, join our community at https://discord.gg/orbitrust

⁂

POST /api/v1/compute/deploy - Deploy container workload

GET /api/v1/compute/providers - List available compute providers

PUT /api/v1/compute/{job_id}/stop - Terminate running job

POST /api/v1/governance/proposals - Submit governance proposal

GET /api/v1/governance/proposals/{id} - Retrieve proposal details

POST /api/v1/governance/vote - Cast vote on proposal

15. Conclusion

[1] [3] [4] [5] [20]

[7]

[37] [8] [38] [3] [20] [23]

[9] [10] [11] [12]

[5] [6] [18] [43] [19]

[47] [48] [49]

[7] [8] [14]

[58] [14] [59]

References

[60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80]

1. https://cardanofoundation.org/blog/introduction-proof-of-stake-blockchains

2. https://dsar.rantai.dev/docs/part-vi/chapter-31/

3. https://www.rapidinnovation.io/post/how-to-build-a-blockchain-with-rust

4. https://www.tokenmetrics.com/blog/what-is-proof-of-stake-a-complete-guide-to-pos-in-2025

https://github.com/orbitrust/whitepaper/references.md
https://github.com/orbitrust/whitepaper/references.md
https://discord.gg/orbitrust
https://cardanofoundation.org/blog/introduction-proof-of-stake-blockchains
https://dsar.rantai.dev/docs/part-vi/chapter-31/
https://www.rapidinnovation.io/post/how-to-build-a-blockchain-with-rust
https://www.tokenmetrics.com/blog/what-is-proof-of-stake-a-complete-guide-to-pos-in-2025

5. https://ideausher.com/blog/tokenomics-design/

6. https://arxiv.org/html/2405.14617v1

7. https://www.walbi.com/blog/post-quantum-blockchain-security-protecting-crypto-from-quantum-attacks-in-2025

8. https://thequantuminsider.com/2025/10/16/btq-technologies-announces-quantum-safe-bitcoin-using-nist-standardized-post-quantum-cryptograp
hy/

9. https://leapcell.io/blog/seamless-server-side-templating-in-rust-web-applications-with-askama-and-tera

10. https://joeymckenzietech.fly.dev/blog/templates-with-rust-axum-htmx-askama

11. https://www.tigera.io/learn/guides/microservices-security/microservices-kubernetes/

12. https://codefresh.io/learn/microservices/microservices-on-kubernetes-how-it-works-and-6-tips-for-success/

13. https://web.ourcryptotalk.com/blog/evolution-consensus-mechanisms-2025

14. https://www.rapidinnovation.io/post/7-stages-of-new-blockchain-development-process

15. https://shkeeper.io

16. https://www.bitpay.com

17. https://www.suffescom.com/cryptocurrency-payment-gateway-development-company

18. https://consensys.io/blog/your-guide-to-ethereum-validator-staking-rewards

19. https://www.osl.com/hk-en/academy/article/understanding-solanas-staking-and-validator-economics-in-2025

20. https://www.rustfinity.com/blog/create-high-performance-rest-api-with-rust

21. https://www.sciencedirect.com/science/article/abs/pii/S0045790625005531

22. https://chain.link/education-hub/how-to-audit-smart-contract

23. https://www.twilio.com/en-us/blog/developers/community/build-high-performance-rest-apis-rust-axum

24. https://www.civo.com/learn/high-performance-rest-api-rust-diesel-axum

25. https://github.com/wpcodevo/simple-api-rust-axum

26. https://www.youtube.com/watch?v=1oJrLNKSVf8

27. https://www.casper.network/get-started/building-a-blockchain-in-rust

28. https://dicg-workshop.github.io/2021/papers/guidi.pdf

29. https://docs.ipfs.tech/concepts/libp2p/

30. https://github.com/libp2p/go-libp2p

31. https://libp2p.io

32. https://www.joshfinnie.com/blog/trying-out-htmx-with-rust/

33. https://blog.logrocket.com/template-rendering-in-rust/

34. https://www.sumologic.com/blog/microservices-architecture-docker-containers

35. https://openliberty.io/guides/kubernetes-intro.html

36. https://morsoftware.com/blog/consensus-mechanisms

37. https://finst.com/en/learn/articles/what-is-slashing-in-crypto

38. https://consensys.io/blog/understanding-slashing-in-ethereum-staking-its-importance-and-consequences

39. https://www.luganodes.com/blog/SlashingKnowledgeArchive/

40. https://www.nervos.org/knowledge-base/slashing_in_PoS_(explainCKBot)

41. https://www.geeksforgeeks.org/computer-networks/distributed-ledger-technologydlt-in-distributed-system/

42. https://en.wikipedia.org/wiki/Distributed_ledger

43. https://blog.bitunix.com/en/sustainable-tokenomics-inflation-deflation-burn/

44. https://nowpayments.io

45. https://solana.com/validators

46. https://shamlatech.com/how-to-create-my-own-digital-currency/

47. https://www.emurgo.io/press-news/decentralized-blockchain-governance-essential-components-explained/

48. https://www.rapidinnovation.io/post/blockchain-governance-models-compared-on-chain-vs-off-chain-decision-making

49. https://fiveable.me/lists/blockchain-governance-models

50. https://freemanlaw.com/decentralized-governance-mechanisms/

51. https://csrc.nist.gov/projects/post-quantum-cryptography

https://ideausher.com/blog/tokenomics-design/
https://arxiv.org/html/2405.14617v1
https://www.walbi.com/blog/post-quantum-blockchain-security-protecting-crypto-from-quantum-attacks-in-2025
https://thequantuminsider.com/2025/10/16/btq-technologies-announces-quantum-safe-bitcoin-using-nist-standardized-post-quantum-cryptography/
https://thequantuminsider.com/2025/10/16/btq-technologies-announces-quantum-safe-bitcoin-using-nist-standardized-post-quantum-cryptography/
https://leapcell.io/blog/seamless-server-side-templating-in-rust-web-applications-with-askama-and-tera
https://joeymckenzietech.fly.dev/blog/templates-with-rust-axum-htmx-askama
https://www.tigera.io/learn/guides/microservices-security/microservices-kubernetes/
https://codefresh.io/learn/microservices/microservices-on-kubernetes-how-it-works-and-6-tips-for-success/
https://web.ourcryptotalk.com/blog/evolution-consensus-mechanisms-2025
https://www.rapidinnovation.io/post/7-stages-of-new-blockchain-development-process
https://shkeeper.io/
https://www.bitpay.com/
https://www.suffescom.com/cryptocurrency-payment-gateway-development-company
https://consensys.io/blog/your-guide-to-ethereum-validator-staking-rewards
https://www.osl.com/hk-en/academy/article/understanding-solanas-staking-and-validator-economics-in-2025
https://www.rustfinity.com/blog/create-high-performance-rest-api-with-rust
https://www.sciencedirect.com/science/article/abs/pii/S0045790625005531
https://chain.link/education-hub/how-to-audit-smart-contract
https://www.twilio.com/en-us/blog/developers/community/build-high-performance-rest-apis-rust-axum
https://www.civo.com/learn/high-performance-rest-api-rust-diesel-axum
https://github.com/wpcodevo/simple-api-rust-axum
https://www.youtube.com/watch?v=1oJrLNKSVf8
https://www.casper.network/get-started/building-a-blockchain-in-rust
https://dicg-workshop.github.io/2021/papers/guidi.pdf
https://docs.ipfs.tech/concepts/libp2p/
https://github.com/libp2p/go-libp2p
https://libp2p.io/
https://www.joshfinnie.com/blog/trying-out-htmx-with-rust/
https://blog.logrocket.com/template-rendering-in-rust/
https://www.sumologic.com/blog/microservices-architecture-docker-containers
https://openliberty.io/guides/kubernetes-intro.html
https://morsoftware.com/blog/consensus-mechanisms
https://finst.com/en/learn/articles/what-is-slashing-in-crypto
https://consensys.io/blog/understanding-slashing-in-ethereum-staking-its-importance-and-consequences
https://www.luganodes.com/blog/SlashingKnowledgeArchive/
https://www.nervos.org/knowledge-base/slashing_in_PoS_(explainCKBot)
https://www.geeksforgeeks.org/computer-networks/distributed-ledger-technologydlt-in-distributed-system/
https://en.wikipedia.org/wiki/Distributed_ledger
https://blog.bitunix.com/en/sustainable-tokenomics-inflation-deflation-burn/
https://nowpayments.io/
https://solana.com/validators
https://shamlatech.com/how-to-create-my-own-digital-currency/
https://www.emurgo.io/press-news/decentralized-blockchain-governance-essential-components-explained/
https://www.rapidinnovation.io/post/blockchain-governance-models-compared-on-chain-vs-off-chain-decision-making
https://fiveable.me/lists/blockchain-governance-models
https://freemanlaw.com/decentralized-governance-mechanisms/
https://csrc.nist.gov/projects/post-quantum-cryptography

52. https://docs.kaia.io/build/best-practices/smart-contract-security-best-practices/

53. https://www.cyfrin.io/blog/10-steps-to-systematically-approach-a-smart-contract-audit

54. https://docs.ton.org/v3/guidelines/smart-contracts/security/common-vulnerabilities

55. https://lightspark.com/glossary/fee

56. https://support.bitcoin.com/en/articles/5344036-fees-for-sending-cryptocurrencies-and-transacting-on-public-blockchains

57. https://www.cointracker.io/learn/transaction-fee

58. https://cardanospot.io/news/roadmap-a-guide-to-gauge-a-projects-potential-5my0NYiWQwCfAQby

59. https://www.blockchainappfactory.com/blog/strategic-crypto-roadmap-for-token-sale-success/

60. https://remoteok.com/remote-jobs/remote-senior-smart-contract-engineer-uniswap-labs-1128364

61. https://www.bmc.com/blogs/kubernetes-vs-docker-swarm/

62. https://defcon.outel.org/defcon29/dc29-consolidated_page.html

63. https://www.nextplatform.com/2018/04/17/docker-inevitably-embraces-kubernetes-container-orchestration/

64. https://huggingface.co/jd445/2018/resolve/main/vocab.txt?download=true

65. https://faculty.nps.edu/ncrowe/coursematerials/english_single_word_freqs.txt

66. https://www.mirantis.com/cloud-native-concepts/getting-started-with-kubernetes/what-is-kubernetes-orchestration/

67. https://www.scribd.com/document/440834454/Cisco-Digital-Network-Architect-pdf

68. https://www.exp.science/education/tokenomics-economic-blueprint-behind-digital-assets

69. https://hnhiring.com/may-2019

70. https://news.ycombinator.com/item?id=21683554

71. https://www.blockchain.com/charts/fees-usd-per-transaction

72. https://coinbound.io/write-a-crypto-whitepaper/

73. https://www.bitbond.com/resources/crypto-whitepaper-how-to-write-it/

74. https://unit-space.com/blog/how-to-write-white-paper-for-blockchain-project

75. https://www.investopedia.com/terms/d/distributed-ledger-technology-dlt.asp

76. https://b2binpay.com/en/news/how-to-write-a-white-paper-a-step-by-step-guide-for-blockchain-startups

77. https://webmobtech.com/blog/blockchain-development-process-stages-milestones/

78. https://cloudnativenow.com/topics/cloudnativenetworking/understanding-kubernetes-networking-architecture/

79. https://komodoplatform.com/en/academy/distributed-ledger-technology/

80. https://swellandcut.com/mag-archive/

https://docs.kaia.io/build/best-practices/smart-contract-security-best-practices/
https://www.cyfrin.io/blog/10-steps-to-systematically-approach-a-smart-contract-audit
https://docs.ton.org/v3/guidelines/smart-contracts/security/common-vulnerabilities
https://lightspark.com/glossary/fee
https://support.bitcoin.com/en/articles/5344036-fees-for-sending-cryptocurrencies-and-transacting-on-public-blockchains
https://www.cointracker.io/learn/transaction-fee
https://cardanospot.io/news/roadmap-a-guide-to-gauge-a-projects-potential-5my0NYiWQwCfAQby
https://www.blockchainappfactory.com/blog/strategic-crypto-roadmap-for-token-sale-success/
https://remoteok.com/remote-jobs/remote-senior-smart-contract-engineer-uniswap-labs-1128364
https://www.bmc.com/blogs/kubernetes-vs-docker-swarm/
https://defcon.outel.org/defcon29/dc29-consolidated_page.html
https://www.nextplatform.com/2018/04/17/docker-inevitably-embraces-kubernetes-container-orchestration/
https://huggingface.co/jd445/2018/resolve/main/vocab.txt?download=true
https://faculty.nps.edu/ncrowe/coursematerials/english_single_word_freqs.txt
https://www.mirantis.com/cloud-native-concepts/getting-started-with-kubernetes/what-is-kubernetes-orchestration/
https://www.scribd.com/document/440834454/Cisco-Digital-Network-Architect-pdf
https://www.exp.science/education/tokenomics-economic-blueprint-behind-digital-assets
https://hnhiring.com/may-2019
https://news.ycombinator.com/item?id=21683554
https://www.blockchain.com/charts/fees-usd-per-transaction
https://coinbound.io/write-a-crypto-whitepaper/
https://www.bitbond.com/resources/crypto-whitepaper-how-to-write-it/
https://unit-space.com/blog/how-to-write-white-paper-for-blockchain-project
https://www.investopedia.com/terms/d/distributed-ledger-technology-dlt.asp
https://b2binpay.com/en/news/how-to-write-a-white-paper-a-step-by-step-guide-for-blockchain-startups
https://webmobtech.com/blog/blockchain-development-process-stages-milestones/
https://cloudnativenow.com/topics/cloudnativenetworking/understanding-kubernetes-networking-architecture/
https://komodoplatform.com/en/academy/distributed-ledger-technology/
https://swellandcut.com/mag-archive/

